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PREFACE
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1. TINTRODUCTION

A systematic investigation is being conducted of the effects of metallic
rare-earth (RE) additions on the microstructure and properties of Ti alloys.
In the first two years of this contract, the objective was to improve the
high-temperature formability of Ti1-6A1-4V, and it was determined that
additions of 0.1 wt? Er or 0.05 wtl Y (1) improve the yield during initial
forging of Ti-~6A1-4V ingots, (2) reduce the high-temperature flow stress, (3)
control grain size at B-processing temperatures, and (4) have no significant
effect on yield strength and fracture toughness of a-f processed alloy

(References 1-3).

The Widmanstatten microstructure of conventionally processed Ti-6A1-4V
obscures the pronounced effects observed when rare-earths are added to a-Ti,
and consequently, the research was shifted to a-rich and single-phase a
alloys. Specifically, rare-earth-modified Ti-8A1 and Ti-~10Al, which have low
density, high elastic modulus, high tensile strength, and high creep-
resistance at 400-700°C, were investigated.

In titanium—aluminum alloys with aluminum concentrations between 10 and
20 at.X, the ordered and coherent @, phase (based on the composition T13A1 and
having an ordered DO;9 lattice structure) is precipitated upon aging (Figure
1) (References 4 and 5). Precipitation strengthening in these alloys is
generally accompanied by a significant loss of ductility, which has been
attributed to the formation of coarse planar-slip bands leading to stress
concentrations at grain boundaries and slip~band intersections in the early
stages of deformation. Plastic deformation in this type of alloy occurs by
the shearing of a, precipitates by glide dislocations (References 6-8).
However, the room—- and elevated-temperature deformation behavior of this class
of alloys and the possibility of improving the room-temperature ductility of
the alloys have not been studied systematically.

The poasibility of improving the room-temperature ductility of an 0y=
precipitation-strengthened Ti-Al alloy by grain refinement has been
demonstrated previously (Reference 9). A significant improvement in strength
and ductility was observed in the alloy when the grain size was decreased from
90 um to 9 um (Figure 2). The increased strength results from the Rall-Petch
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Figure 1. Phase diagram of the titanium-aluminum system.

grain-size dependence of flow stress. The improved ductility in fine-grained
alloy results from a fine, homogeneous slip devoid of excessive localized

stress-concentration sites (Figures 3 and 4).

Previous investigations at MDRL on the effects of rare-earth additions to
pure titanium (References 10 and 11) have shown that the addition of small
amounts of Er and Y to titanium results in a uniform dispersion of fine
20-50 nm diam particles in the metal matrix. The presence of such fine
dispersoids results in a significant grain refinement and grain-growth
retardation at elevated temperatures. These results demonstrate the potential
beneficial effects of rare-earth additions to aj,-precipitation~strengthened
Ti-Al alloys because both small grain size and the presence of fine
dispersoids result in an increase in flow stress and are conducive to slip
modification from coarse, planar slip to fine, uniformly dispersed slip. The

dispersoids can act also as dislocation sources in a source-poor material.

For the fourth phase of this research program, the objectives were to:
(1) determine the influence of rare-earth dispersoids on recrystallization

and grain-growth behavior in Ti-Al-RE alloys,
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Figure 3. (a) Stip distribution and (b) fracture mode

in Ti-8AS with 9-um grain size.

Figure 2. Effects of grain size and aging on duciility of
Ti-8A1-0.258i.
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Figure 4. (a) Slip distribution and (b) fracture mode
in Ti-8Al with 90-um grain size.




(2) determine the influence of rare-earth dispersoids on room-temperature
and elevated-temperature tensile properties of Ti-Al-RE alloys,
(3) determine the modification in slip behavior resulting from the
combinations of rare-earth dispersoids and heat treatments,
(4) determine the high-temperature creep characteristics of Ti-Al-RE
alloys,
(5) determine the room- and elevated-temperature, low-cycle fatigue
characteristics of Ti-Al-RE alloys,
(6) determine the room-temperature fracture toughness of Ti-Al-RE alloys,
and
(7) analyze the combined effects of a, precipitates and rare-earth
dispersoids on the strength, ductility, and fracture toughness of Ti-
Al alloys on the basis of microscopic mechanisms.
Figure 5 is an outline of the research on the effects of rare-earth
additions on the microstructure and mechanical properties of Ti~8Al and Ti~-
10Al alloys.
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Figure S, Outiine of research on the effects of yttrium snd erblum additions on the
microstructure and mechauical properties of TI-8Al sad Ti-10Al alloys.
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2. ALLOY PREPARATION AND PROCESSING

For preliminary assessment of the microstructural and mechanical-property
changes effected by the addition of Er and Y, 0.25-kg button ingots of the
alloy compositions shown in Table 1 were prepared by vacuum arc melting the
alloys in a water-chilled copper hearth. Each button was prepared from a
mixture of Ti-50A grade titanium, high-purity aluminum, and Ti-25Y and Ti-25Er
master alloys. The button ingots were hot rolled to 3.5-~mm sheets. The Ti-
8A1-1.5Y, Ti1-10Al-1.5Y, and Ti-10A1-2.0Er alloys cracked severely during

rolling and could not be rolled to 3.5-mm sheets.

The alloy compositions shown in Table 2 were prepared at TIMET by
consumable-electrode arc-melting 4.5-kg ingots in a purified dry-argon
atmosphere using Ti~50A grade titanium, high-purity aluminum, and Ti-25Y and
Ti~25Er master alloys. The ingots were forged and rolled at 1100°C to 12.5-mm
plates, from which specimen blanks for fracture toughness determinations were
cut. The 12.5-mm plates were then hot rolled at 850°C to 6-mm and 3-mm
plates. Attempts to roll the alloys at a lower temperature to obtain heavily
worked, unrecrystallized microstructures resulted in severe edge cracking of

the alloys. Chemical analyses of samples taken from the ingots were performed

by TIMET and revealed lower Er and Y concentrations than the aim chemistry
(Table 2).

TABLE 1. COMPOSITIONS OF Ti-8Al-RE AND

Ti-10ALRE 0.25-kg BUTTON INGOTS.

Ti-8Al Ti-10A!

Ti-8A10.06Y Ti-10AI-0.05Y
Ti-8AL0.10Y Ti-10AI0.10Y
Ti-8A0.50Y Ti-10A1-0.50Y
Ti-8A1-1.00Y Ti-10Al1-1.00Y
Ti-8AI-0.2Er Ti-10A)-0.2Er

Ti-8Al-1.0Er Ti-10AI-1.0Er

Ti-8Al-2.0Er Ti-10Al-2.0Er

QP03-00%4-2




TABLE 2. COMPOSITIONS AND CHEMICAL ANALYSES OF Ti-8AI-RE AND

TH10ALRE S-kg INGOTS.
—_—__—'—__—_—_—_—__-————-——_———_———
Alloy Nominel Concentration (wtX)
hest no.  compasition Al Fe N o Y &
: VEe1s  TiBAl 77 0.060 0.004 012 _ -
L V6819  TLBALO.1OY 84  0.048 0.003 012 0052 -
VE820  TiBAN0.20Er 81 0064 0.003 0004 - 013
VE621  Ti8AMO.0BY 86 006 0.008 011 002 -
. VE622  TiO0AI 102 00864 0.004 011 - -
- V8623  TH10AI0.00Y  10.4  0.049 0.008 018 0067 -
V6624  Ti-10AL0.20Er 104  0.05 0.006 0.14 - 018
VE625  Ti-10AM00SY 106  0.053 0.004 012 002 -
—_—
GP03-0054-3
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3. MICROSTRUCTURAL CHARACTERIZATIONS

3.1 Microstructures of Hot-Rolled Ti~-8A1-RE and Ti-10Al1-RE Alloys

The rolled 6-—mm and 12.5-mm alloy sheets had heavily worked, partially
recrystallized grain structures, whereas the 3-mm sheets had fully
recrystallized grains of 20 ym diameter. There were no significant
differences between the as~rolled microstructures of the control and Y- and

Er-containing alloys.

Figures 6 and 7 are thin-foil electron micrographs showing the
dislocation substructures and dispersoids in the hot-rolled Ti-8A1l~RE and
Ti-10A1-RE alloys. The dispersoids in the Y- and Er-containing alloys are
spherical, 50-200 nm in diameter, and incoherent with the matrix (Figures 6b,
6c, and 7b). Foils prepared from several alloys revealed that the density of
dispersoids varied considerably within each alloy, and in some foils few
dispersoids could be seen. The density of dispersoids in the thin foils was
much lower than expected from the nominal rare-earth concentrations in the
alloys. This result could be due to leaching of the dispersoids during
electrolytic thinning of the foils or inhomogeneous mixing of the rare-earth
additives during melting. In contrast with the fine dispersoids in the alloys
containing less than 0.1 wtX Y or 0.2 wtX Er, the alloys containing higher Y
and Er concentrations had numerous, coarse, 1-5 um diameter, Y-rich and Er-
rich particles. Figures 8-10 are scanning electron micrographs and x-ray
spectra of the dispersoids observed in the alloys with high rare-earth

concentrations.
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Figure 7. Transmission electron micrographs of hot-rolled
(2) Ti-10Al and (b) Ti-10A1-0.1Y alloys.

GP03-0054-17
Figure 6. Transmission electron micrographs of
hot-rolled (a) Ti-8Al, (b) Ti-8A1-0.1Y, and
(¢) Ti-8A1-0.2Er,
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GP03-0954-18

Figure 8. Scanning electron micrographs of Er dispersoids
in Ti-8Al-1.0Er slloy: (3) and (b) secondary electron images
of dispersoids, and (c) x-ray spectrum of the specimen.
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Figure 9. Scanning electron micrographs of Ti-10Al-1.5Y
alloy: (a) and (b) secondary electron images of dispersoids,
and (c) x-ray spectrum of the specimen.
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. - GP03.0954-21
Figure 10. Scanning electron micrographs of Ti-10A1-2.0Er
alloy: (a) and (b) secondary ele~tron images of dispersoids,

. and (c) x-ray spectrum of the specimen.




3.2 Recrystallization and Grain-Growth of Ti-8A1-RE and Ti-10A1-RE Alloys

The hot-rolled T{-8A1-RE and Ti~10A1-RE alloys were annealed at 890°,
9209, 950°, and 980°C and air cooled to room temperature to determine their
recrystallization and grain-growth behavior. The grain sizes resulting from
the different annealing treatments are shown in Table 3. For short, 10-min
anneals at 890°, 920°, and 950°C, the grain size i1s unaffected by Er and Y,
but for longer times, the rare-—earth-containing alloys have smaller grain
sizes than the control alloys. The grain refinement in Er- and Y-containing
alloys results from an increased frequency of recrystallization nuclei and
decreased rates of recrystallization and grain growth. The extent of grain
refinement caused by each process depends on both the size and spacing of the
second~phase particles; coarse (> 1 ym diam) particles increase the
recrystallization nucleation frequency, and fine particles with an
interparticle spacing less than 1 ym retard recrystallization and inhibit
grain growth. The grain refinement effected by Er and Y additions is significantly
less in Ti-8Al and Ti-10Al alloys than in pure Ti (References 10 and 11).

TABLE 3. EFFECTS OF ANNEALING TREATMENTS ON RECRYSTALLIZED
GRAIN SIZE IN Ti-S8ALRE AND Ti-10ARRE ALLOYS.

Recrystallized grain size
{um)
r— - S =\
Annealing -
trestment® § § g e E
$ 9 - § 3
3 § 3 s § 3 S
% 3 T %
= - - - = - =
As rolled 267 230 198 195 303 224 237 26.1
800°C/10min/AC 128 - 154 -— - - -
920°C/10 min/AC 154 -~ 164 - - - -
960°C/S min/AC 1566 - 162 - - - - =
900°C/1 WAC 270 229 2086 209 220 184 165 -
960°C/10 min/AC 240 239 243 239 -~ - - -
960°C/10 min/AC 319 262 188 232 - - - -
600°C/24 h/AC
980°C/6 min/AC 269 239 221 243 225 1.7 181 160
980°C/20 min/AC 282 - 308 - - - - -
900°C/10 min/AC 413 305 249 258 - - - -
878°C/24 h/AC
980°C/1 h/AC 452 384 343 394 480 293 320 284
980°C/8 h/AC @1 - 282 Be - - - -
*AC = air cooled 0PO30084-4




3.3 Precipitation Behavior of Ti-8A1-RE and Ti-10A1-RE Alloys

To obtain variations in sizes and volume fractions of a,-phase
precipitate particles in the a-titanium matrix, precipitation anneals were
performed at 750°C for 24 h and 600°C for 500 h for Ti~10A1-RE alloys quenched
from 980°C and at 675°C for 24 h and 600°C for 500 h for Ti-8A1-RE alloys
quenched from 950°C. Quenching from 950° and 980°C results in single-phase a
as evidenced by an c-phase diffraction pattern without any a,-precipitate
reflections. Upon aging the alloys at 600°C for 500 h, the ay-phase
precipitates homogeneously in the form of elongated ellipsoids with their long
directions parallel to the c-axis of the hexagonal matrix (Figures 11-13).

The precipitate reflections are marked S in the selected area diffraction
pattern shown in Figure 1llb. The precipitates formed at 600°C are coherent
with the matrix and are 5-10 nm in diameter as measured on the basal plane.
The Y and Er additives have no effect on a, precipitation at 600°C. Upon
aging the alloys at 675°C, however, the Ti-8A1-0.05Y has a single-phase a
microstructure (Figure 14b), in contrast to the two-phase a + a,
microstructure of Ti-8A1 and Ti-8A1-0.2Er alloys (Figures l4a and lé4c). The Y
additions lower the a to a + a, transition temperature. The Ti-8A1-RE alloys
aged at 750°C have single-phase a microstructures as shown in transmission
electron micrographs and corresponding selected area diffraction patterns in
Figure 15. The Ti-10A1-RE alloys aged at 750°C have two-phase a + a,

microstructures (Figure 16).

13
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X

(b)

1 um

GP03-0954-22

Figure 11. Microstructure of Ti-8Al alloy aged at 600°C for
500 h and air cooled to 25°C: (a) bright-field transmission
electron micrograph and (b) selected area diffraction

(SAD) pattemn.
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Figure 12. Transmission electron micrographs of a,
precipitates in (a) Ti-8A), (b) Ti-8Al-0.1Y, and

(c) Ti-8Al-0.2Er aged at 600°C for 500 h and air
cooled to 25°C.
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' L. i
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GP03-0954-24

Figure 13. Transmission electron micrographs of
(a) Ti-10A! and (b) Ti-10A1-0.1Y aged at 600°C
for 500 h and air cooled to 25°C.

GP03-0954-25

Figure 14. Transmission electron micrographs of
(a) Ti-8Al, (b) Ti-8Al-0.05Y, and (c) Ti-8A1-0.2Er
aged at 675°C for 24 h and air cooled to 25°C.
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1 um 1um

(b} (b)

GP03.0954-27

Figure 16. Transmission electron micrographs of (a) Ti-10Al,
(b) Ti-10A1-0.1Er, and (c) Ti-10A1-0.2Er aged at 750°C
Figure 15. Transmission electron micrographs of (a) Ti-8Al, for 21 h and air cooled to 25°C.
(b) Ti-8A1-0.1Y, and (c) Ti-8AL-0.2Fs aged at 7S0°C for 21 h

and air cooled to 25°C.

GP03.0954-26
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4. TENSILE PROPERTIES OF Ti-8A1-RE AND Ti-10Al1-RE ALLOYS

:
4
¥
b4
!
i
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The room-temperature tensile properties of Ti-8Al-RE and Ti-10A1-RE
alloys with different combinations of grain size and a, precipitate density
are listed in Tables 4-7 and shown in Figures 17-21. The effects on 0.2%
yield stress of grain size and aging treatments indicate that both the unaged
and aged alloys exhibit a Hall-Petch dependence of yield stress on grain
size. The yleld stress increases with increasing volume fraction of ey
precipitates, and grain size strengthening (Aog-s) and precipitation
strengthening (Aaaz) are linearly additive. The additive behavior of Aog,s
and Ao, indicates that the deformation is transmitted from grain to grain by
a simple Hall-Petch type mechanism in which dislocations pile up against the
grain boundaries, and the resultant stress concentrations ahead of these pile-
ups nucleate dislocation sources in the vicinity of grain boundaries in the
neighboring grains. TEM observations of the shearing of the a, precipitates
by glide dislocations and the resulting formation of narrow planar slip bands

support such a hypothesis.

The results in Table 4 indicate that no significant dispersion
strengthening occurs in Y- and Er-containing Ti-8Al alloys. The yield stress
in aged Ti-8Al1-RE alloys containing @, precipitates is governed by some form

‘ aaperposition of the matrix flow stress, precipitation strengthening from
a, precipitates, and dispersion strengthening from the rare-earth ;
dispersoids. The matrix flow~stress of single-phase Ti~8Al1 alloys i= * 300 {
MPa, and the precipitation strengthening contribution for the allow: aged at {
600°C for 500 h is ~ 40 MPa. The dispersion strengthening contribution is

given by
1.13 Gb x
TS5 In (—ro], (1)

where G is the shear modulus of the matrix, b is the Burgers vector of the
dislocation, L is the interparticle spacing, x is the mean particle size, and
r, is the inner cut-off radius, which is considered equal to 4b. Equation (1)
is the geometr{c mean of the bypassing stresses for edge and screw

dislocations, and it includes a statistical factor of 0.85 that relates the

17




macroscopic flow stress to the local Orowan stress. A value of 0.35 for the
Poisson ratio of Ti-~8A1 alloys was used in deriving &guation (1). ‘The mean
planar center-to-center spacing between the dispersoids, Lc’ was calculated
from the number of particles, N, in a unit area of the slip plane using the
relation L, = (N)'llz. The mean planar interparticle spacing, L, is then the

difference between Lc and the mean particle size, x.

For L = 2.5 ym and x = 100 nm (typical values observed in the Ti~8A1-RE
alloys), the flow-stress increase attributable to the dispersoids in

polycrystalline Ti-8Al1l alloys is = 7-20 MPa. The dispersion strengthening is

offset to some extent by the softening of the Ti-841 matrix caused by the
scavenging of the interstitial oxygen by rare-earths and consequent reduction
in the interstitial oxygen concentration. Thus, the dispersion strengthening
: contribution is small compared with matrix-flow-stress and precipitation

strengthening.

A striking effect of the Er and Y dispersoids is a dramatic increase in
ductility of both single-phase and ap-precipitate-containing Ti-8A1 alloys
(Figures 17-21). This increased ductility results from dispersal and
homogenization of planar slip by the dispersoids. The inconsistencies

observed in the effects of dispersoids on the ductility values (Figures 17-21)

are believed to be due to variations in the rare-earth concentration from

region to region in a single alloy plate. The absence of rare-earth effects
on the ductility of alloys containing high rare-earth concentrations is due to

the ineffectiveness of coarse particles in modifying the coarse planar slip.

The temperature dependences of the strength and ductility of Ti-8A1-RE
and Ti-10A1-RE alloys at 25°, 350°, 450°, 550°, and 600°C are shown in Table
8. The 0.2% yield stress and ultimate tensile strength decrease with
increasing temperature, and the total elongation increases. The high-
temperature mechanical properties are not significantly altered by Er and Y
additions.

A
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TABLE 4. ROOM-TEMPERATURE TENSILE PROPERTIES OF Ti-8AI-RE ALLOYS.

Yield stress at 0.2% offsst Uniform elongation Ultimate tengile stress Total slongation
(MPa) (%) (MP3) (%)
-~ A -\ A N A, 2" s ~A. N\
> > > > -
Heat trestment g x & g > 4 g = 2:‘ & = §
Py ? 2 z'? - g ? 9 3 2 g e 3 ? ; 4
$ ¢§ 3 4% 2 3 3§ 33 37 3833 33
= - [~ - = - = = - - - - - - -
890°C/10 min; air cool at 26°C 887 873 876 862 934 928 909 9156 127 13.7 13.0 125 21.7 263 27.0 245
675°C/24 h; air cool to 25°C
883 946 1008 876 944 - 70 -~ 5) 06 89 16 6.1

8902C/10 min; air cool to 28°c 832 928 -
600°C/500 h; air cool to 25°C

950°C/10 min; air cool to 26°C 805 815 822 798 825 847 850 828 160 165 156 17.3 168 31.7 298 31.2

950°C/10 min; air cool to 25°C 877 883 893 867 889 928 943 894 05 53 94 12 1.2 62 103 1.7
600°C/500 h; air cool to 25°C

980°C/10 min; air cool to 25°C 860 827 844 815 860 860 853 846 134 152 163 163 152 152 288 N4

9800C/10 min; air cool 10 26°C 814 815 826 814 846 834 856 851 144 151 142 149 181 241 162 234
675" C/24 h; air cool 1o 25°C

980°C/8 h; air cool to 25°C 802 790 788 774 811 827 813 799 1.7 178 182 184 10.1 280 305 31.2
*3807C/8 h; air cool to 26°C 804 806 783 78 817 830 796 819 29 178 132 159 74 288 17.3 234
675°C/24 h; air cool 1o 25°C
*9800C/8 h; air cool to 26°C 771 782 793 764 791 810 811 8089 1.7 21° 84 146 43 31 103 243
675°C/24 h; air cool to 25°C
980°C/8 h; air cool to 26°C 849 841 840 835 861 851 885 852 065 07 94 10 1.3 12 108 1.6

600°C/500 h; air cool to 26°C

*Duplicate tests
GPo3-0084-5

TABLE 5. ROOM-TEMPERATURE TENSILE PROPERTIES OF Ti-8A1 ALLOYS WITH HIGH Y AND Er CONCENTRATIONS.

Yield stress st Ultimate Uniform Total
0.2% offset tonsile stress olongetion elongation
(MPa) (MPs) (%) (%)
Hoat — A ——A—\ A ———A———
treatment  § 5 8 8 5 & 8 5 8 8 " 8 &
Psiiisiidsdiiaiii
{ - ~ = F == E - - = 3 3 - = i -
950°c/24 b;
aircoolt025°C L 708 741 722 742 761 808 794 829 9.2 88 105 118 126 107 134 145
; 675°C/24 h;
g aircoolt025°C T 708 712 741 741 754 753 789 813 22 30 48 87 45 37 51 90
] 980°C/2 h;
; aircoolat25°C L 699 700 717 720 781 768 800 813 193 164 161 104 27.2 195 17.4 114
I T 980°C/2h;
i : air cool to 25°C
‘» . o T 719 726 740 769 789 789 815 856 108 75 82 101 135 90 87 107
875°C/24 n;

air cool to 26°C
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TABLE 6. ROOM-TEMPERATURE TENSILE PROPERTIES OF
Ti-10AIRE ALLOYS*.

Ultimate tensile stress Total elongation
(MPa) (%)
r —A e N >L N\
Heat g & & g x &
restment . ¢ ¢ ¢ _ 8 ¢ ¢
I 2 35 3 3% 85 3 %
s T = et Y I oy ey
= = [ - - - [ -
980°2/5 min; aircool t0 26°C 796 887 882 900 0.7 10 09 14
9&0015 min; air cool to 25°C 801 919 876 757 07 08 06 OS5
750%C/24 b; air cool to 26°C
980 C/5 min; air cool to 25°C 927 827 731 731 05 05 03 0S5

600°C/500 h; air coot to 26°C
1000°C/4 h; air cool to 25°C 716 798 770 730 05 07 05 0S5

; 1000°C/4 h; air cool to 25°c 597 693 563 610 05 05 04 0.4
600°C/500 h; air cool to 25°C

* The 0.2% offset visld stress and uniform elongation are not reported

because all specimens fractured without significant plastic deformation. a 7

TABLE 7. ROOM-TEMPERATURE TENSILE

PROPERTIES OF HOT-ROLLED Ti-10Al WITH HIGH Y

AND Er CONCENTRATIONS.

Yield stress at  Uitimate tensile  Uniform Total
Alloy 0.2% offsst stross elongation elongation
(MPa) (MPa) (%) (%}
Ti-10Al 741 849 2.7 3.9
Ti-10AI-0.5Y 689 838 22 24
Ti-10A)-1.0Er 669 809 14 1.7
GP03-0054-8
900 35

O Tisa

Ti-8AI-0.05Y
860 |- [ Ti-8ar-0.10Y
Ti-BA1-0.20Er

820 [—
®
s
37 -
-]
7]
740 —
700 t+—
-
0 i
0.2% yield Unitimate Total
stress tensile elongation
stress

GR0J-0DS4-28
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Figure 17. Room-temperature tensile properties of
Ti-8Al rare-earth alloys annealed at 950°C for
10 min and air cooled.

Elongation {%)
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N :
820}~ 26 860 [~ § o —~20 :
= N i - ,
3 2 3 N z |
2 5§ 2 N |- § -
< 780}~ 202 STso | N ~15% :
g g 2 § - ;
w § ) w :
740 |~ —{15 780 — - 10 :
N
' ‘§ .,
700 10 740 — § 5
f 4 N
< § . § r N B
7 i N L N,k
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stress & 2 stress a 2
Figare 18. Room-temperature tensile properties of Figure 19. Room-temperature tensile properties of
Ti-8Al/rare-earth alloys annealed at 950°C for
g Alfre-earth alloys annealed at 980°C for 10 min and aged at 600°C for 500 h.
800 3 Tiea 30 900 O Tisai %
) Ti-8A1-0.05Y Ti-8AL0.05Y
(3 Ti-8ar0.10v 2 860 I— . TiBAKOOY |
01 @ Tiear0.208r : ; N r 7 N : Ti-8A1-0.20Er
820~ § § 820 |- \\§ ; 20
F N N\ % N N £
: 3 N N g 3 N N =
g \ \ e & \ N .' <
3 s N N § 2 \ N s 2
: 780 |~ N N 2 2% | N N 15 3
172} - - A w
N N w N N
240} - ‘ § 740 |- '- "_ 110
N N N N
N N N N
. I ‘. \ ki \ » \ ) -
» N E N . :
L A 3 i N l § i N
" D ° 0.2% yiel Ultimete Total 0 0 0.2% yield Ultimate Total 0
: . stress tensile elongation stress :::;Le elongation
e GP03.0984-31 GP03.08%4.32
Figure 20. Room-tempersture tensile properties of Figure 21. Room-temperature tensile properties of
Ti-8Al/rare-earth slloys annealed at 980°C for Ti-8Al/rare-earth alloys annealed at 980°C for
10 min and aged st 675°C for 24 h. 8 h and aged at 600°C for 500 h.
21
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5. FRACTURE MORPHOLOGIES AND DEFORMATION SUBSTRUCTURES OF Ti-8Al-RE
AND Ti-10A1-RE ALLOYS

|
!
\;w‘mhﬂwﬁw Mj

The fracture surfaces of Ti-8A1-RE alloys deformed at 25°C after

annealing at 980°C for 8 h and air-cooling to 25°C consist of dimples formed
by nucleation, growth, and coalescence of microvoids (Figure 22). In Ti-8Al-
RE alloys, fracture initiates at particle-matrix interfaces, resulting in a
higher microvoid density and smaller dimple size than in Ti-8A1 without rare-
earths (Figure 22b).

The Ti-8A1 alloys without rare earths but containing ay precipitates

. fracture by cleavage as evidenced by transgranular facets on the fracture
' surfaces (Figure 23a). The inhomogeneous, coarse slip caused by the shearing

of a, precipitates by glide dislocations promotes cleavage fracture. In the
i rare~earth-containing alloys, however, the dispersoids disperse the planar
slip, reduce the inhomogeneity of slip, and promote microvoid nucleation; thus
fracture occurs by mixed dimple fracture and cleavage in the Ti-8A1-RE alloys
(Figure 23b). The observation of dimple fracture in Y- and Er-containing Ti-
8Al1 is consistent with the higher ductility of these alloys. The fracture
e surfaces of alloys aged at 675°C for 24 h have mixed dimple and cleavage
fracture because of a lower volume-fraction of a, precipitates (Figure 23).

The Ti-~10A1-RE alloys exhibit predominantly cleavage fracture (Figure 24).

The deformation substructures in differently heat-treated Ti-8A1-RE
alloys are shown in Figures 25-28. Figure 25a shows the slip character of Ti-
8A1 containing &, precipitates produced by aging the alloy at 600°C. The
dislocation density is low, and the dislocations are confined to narrow planar
slip bands because of shearing of the coherent a, particle by glide
dislocations. The slip bands are devoid of ay particles, indicating that
these particles are destroyed in the slip bands by successive movements of the

dislocations. In the Y- and Er-containing alloys, the substructure consists

; . of a high density of relatively homogeneously distributed dislocations
(Pigures 25 and 26), indicating profuse cross slip in these alloys. The
A tendency for planar slip is significantly reduced by the rare-earth

dispersoids, and stress build-up in slip bands is relieved (as shown at S in
Figure 26b).

P
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A

(b)

As seen from Figures 25-28, the dispersoids homogenize the slip and
refine the substructure formed during deformation. The dispersed phase
modifies the slip behavior by providing dislocation sources and barriers to
dislocation motion. Dislocations can overcome the dispersed-phase particles
by the Orowan bypass and Hirsch cross-slip mechanisms, which result in greater

densities of localized channels of dislocations during the initial stages of

(a)

10 nm

10 nm
{b)

{ |

10 nm

10 nm GP03-0984-35
GPO3.0954.33 Figure 23. Fractographs of (2) Ti-8Al and (b} Ti-8A#-0.1Y

alloys tested in tension at 25°C after annealing at 980°C
Figure 22. Fractographs of (s) Ti-8Al and (b) TH8AI0.1Y for 8 h, air cooling to 25°C, aging at 6759C fox 24 h
alloys tested in tension at 25°C after annealing at 980°C and sir cooling to 25°C, '

for 8 h and air cooling to 25°C,




deformation in the presence of dispersoids. As the deformation increases,

dislocations are swept into the channels, and well-defined cells are thus

formed whose spacing is determined by the spacing of the initial localized

chanunels. At higher temperatures, a decreased planarity of slip accompanied

by recovery results in larger dislocation cells.

(a)

10 nm
{b)

10 nm

GP03.0954-38

Figure 24. Fractographs of (a) Ti-10Al and (b) Ti-10AI-0.1Y
alloys tested in tension at 25°C after annealing at 980°C for
5 min, air cooling to 25°C, aging st 600°C for S00 h, and
air cooling to 25°°C.
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Figure 25. Dislocation substructures in () Ti-BAl (grain

size = 32 um) and (b) TI-8A1-0.1Y (grain size = 19 um) alloys
deformed In tension at 25°C after anaealing at 950°C for

10 min, air cooling to 25°C, aging st 600°C for 500 h,

and air cooling to 25°C.
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Figure 26. Dislocation substructures in (a) TI-8Al (grain

size = 44 um and (b) TI-8A1-0.1Y (grain size = 28 um) alloys
deformed in tension at 25°C after annealing at 980°C for

8 b, air cooling to 25°C, aging at 600°C for 500 b, and

air cooling to 25°C.
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Figure 27, Dislocation substructures in (8) Ti-8Al (grain size = 41 um), and (b), (¢), and
(d) Ti-8Al1-0.2Er (grain size = 26 um) deformed in tension at 25°C after annealing at 980°C
for 10 min, air cooling at 25°C, aging at 675°C for 24 h, and air cooling to 25°C.
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(a) {b)

(e} {d)

1 um
. GPD3-0954-40

Figure 28. Dislocation substructures in (s, b) TI-8Al (grain size = 41 um) ana ., d) Ti-8A)-0.1Y
(grain size = 25 ;um) deformed in tension at 25°C after annealing at 980°C for 10 min, air
cooling to 25°C, aging at 675°C for 24 h, and air cooling to 25°C.
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! 6. CREEP DEFORMATION OF Ti-8A1-RE AND Ti-10A1-RE ALLOYS

The steady-state creep rates, stress exponents, and apparent activation
energies for creep of single-phase and a,-precipitation-strengthened Ti-8Al
and Ti-10Al alloys were determined at 400-650°C. An increasing Al
concentration and increasing volume-fraction of @, precipitates decrease the
creep rates as shown in Figures 29 and 30. The stress dependence of the
steady-state creep rate of single-phase Ti-8A1 and Ti-10Al alloys follows

power laws with exponents = 3 at low stress and ~ 9 at high stresses. The

presence of a, precipitates results in a lowering of the stress exponent at

|

[ low stresses. The steady-state creep rates at 600°C are significantly lower
; for the Ti-8Al and Ti-10Al alloys than for Ti-6A1-4V (Figure 31).
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Figure 29. Effect of annesling on the stress dependence Figure 30, Effect of annealing on the stress dependence
of steady-state croep rate at 600°C in Ti-8AL of steady-state creep rate at 600°C in Ti-10Al.
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Yttrium does not alter the creep rates in precipitation—annealed Ti-8Al
and Ti-10Al, but in the alloys annealed in the single-phase a region, Y
increases the creep rate. The activation energy for creep of single-phase
alloys, AHG, is greater than that of ap-precipitation-annealed

alloys, AHGZ (Figures 32 and 33), with both AHQ and Aﬂa being significantly

2
higher than the activation energy for self diffusion of titanium. The
activation energies for creep of differently heat-treated alloys are listed in

Table 9.

The deformation substructure formed by creep at 650°C in aged Ti-8Al-
0.1Y, shown in Figures 34-37, consists of a high density of tangled and
relatively homogeneously distributed dislocations; this substructure is
typical of Ti-Al alloys deformed at high temperatures. The activation energy
for cross slip is reduced, cross slip is easily activated, and deformation is

more homogeneous at high temperatures.

Stress (MPal
103 200 300 400
) T ] —
— -
— 600°C B
104 | pe
= Ti-6AI-4V —
10 ‘ﬁ
. N
2
©
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- 6 e |
; 10 -y
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°
9
2 —yt
12}
A== -
10 -
"1
- —
108 i | 1 11 ]
48 50 52 54 56 58 6.0 6.2
tn (stress} GPO3-0954-45

Figure 31. Comparison of creep rates of TI-8Al,
Ti-10A), and TI-6Al-4V.
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Figure 32. Effect of rare-earth addition on the temperature dependence of steady-state creep rate in

(2) Ti-8A1 and (b) Ti-10Al alloys.
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i Figure 33. Effect of annealing on the temperature dependence of steady-state creep rate in
i (a) Ti-8Al and (b) Ti-10Al alloys.
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;
TABLE 9. ACTIVATION ENERGIES FOR CREEP OF Ti-8AI-RE AND
Ti-10A)-RE ALLOYS.
Heat Activation energy (kJ° mol'!)
treatment Ti8Al TiBALO.1Y Ti-10Al Ti-10A0.1Y
A 980°C/10 min; air cool to 26°C 392 385 375 -
98020/10 min; air cool to 25°C
657°C/24 h; sir cool to 25°C - 337 - 300
%086/10 min; air cool to 26°C
. 600°C/500 h; air cool to 26°C 300 - 314 295
GPO3-0054-10
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Figure 34, High-magnification transmission electron
micrograph of Ti-10Al deformed in creep at a stress of
404 MPa at 475 - 650°C after annealing at 980°C for
10 min, air cooling to 25°C, aging at 600°C for 500 h,
and air cooling to 25°C.
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{b)
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GP03-0954-48

Figure 35. Dislocation substructures in Ti-10Al deformed

in creep at a stress of 404 MPa at 475 - 650°C after

annealing at 980°C for 10 min, air cooling for 25°C, aging

at 600°C for 500 h, and air cooling to 25°C: (a) g =

and (b) g = (0110).
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Figure 36. Dislocation substructure in Ti-8Al-0.1Y
deformed in creep at a stress of 338 MPa at 475 - 650°C
after annealing at 980°C for 10 min, air cooling to 25°C,
aging at 675°C for 24 h, and air cooling to 25°C: (a) bright-
field micrograph under many-beam condition, (b) dark-field
mictograph with matrix reflection g = 0711, and (c) dark-
field micrograph with precipitate reflection.
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Figure 37. Dislocation substructure in Ti-8Al-0.1Y
deformed in creep at a stress of 338 MPa at 475 - 650°C
after annealing at 950°C for 10 min and air cooling to 25°C:
(a) bright-field micrograph under many-beam conditions and
(b) bright-field micrograph with g = (1010).




7. LOW-CYCLE FATIGUE OF Ti-8A1-RE AND Ti-~10Al1-RE

S e e A .

7.1 Low-Cycle Fatigue Characteristics
The low-cycle fatigue characteristics of Ti~B8A1-RE and Ti{-10A1-RE alloys

were measured as functions of microstructure and temperature. Table 10 lists
the heat treatment schedules used to obtain single-phase alloys (heat
treatment 1), two-phase alloys with fine, coherent, TijAl (“2) precipitates
(heat treatment 2), and two-phase alloys with coarse, semicoherent, T13A1
precipitates (heat treatment 3).

The low-cycle fatigue characteristics of the alloys were determined under
b alternate tension-compression at constant plastic-strain amplitudes of
+ 0.125 ~ 0.52. The geometry of the low~cycle fatigue specimens is shown in
Figure 38.

The specimens and grip assembly were enclosed in a resistance-wound split
furnace and equilibrated at the test temperature for 1 h prior to testing.
Plastic-strain amplitude was controlled manually for the first few cycles by
activating the cycling controls when the desired tension and compression
strain limits were reached. The nominal strain rate was maintained at
- ~1.36 x 10~3 -1 during the first 10 cycles, after which the strain rate was

doubled. Figure 39 is a schematic of the hysteresis loop generated during the

alternate tension-compression fatigue testing of Ti-8A1 alloy at 600°C at a
plastic strain amplitude t 0.52. After the first few cycles, the cycling was
switched to an automatic mode. The automatic control of the constant-plastic-
strain amplitude was obtained by activating the cyclic controls of the MIS
machine at the points of peak loads along the lines drawn on the chart paper

TABLE 10. HEAT TREATMENTS AND MICROSTRUCTURES OF Ti-8A}-RE AND
Ti-10A}-RE ALLOYS SELECTED FOR LOW-CYCLE FATIGUE CHARACTERIZATION.

——— e

Alloy
Microstructure
Heat trestment Ti8AFRE TI-10AMRE
1 950°C/30 min/AC  980°C/30 min/AC  Single phase
2 600°C/500 h/AC 600°C/500 h/AC Fine coherent a,
A in Ti-Al matrix
3 950°C/30 min/AC ~ 980°C/30 min/AC  Coarse semi-coherent
+650°C/48 /AC  +660°C/48 h/AC @ precipitates in
Ti-Al matrix
AC = air cool GPOS-0084-11
s




Dimensions in mm

57.2

T_

19.9

GP02-0954-52

Figure 38. Low-cycle fatigue specimen.

passing through(+ Yp, O) and (- yp’ o), vhere Yp is the desired strain
amplitude, and having slopes corresponding to the elastic modulus of the
system. The specimens were tested at several comnstant~plastic-strain
amplitudes in the range 0.125-0.5%, and testing was continued until saturation
or final fracture. After the tests, the specimens were immediately fan cooled
to room temperature to minimize oxidation of the fracture surfaces and post-

fatigue recovery.
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-0 GPO-0954-53

Figure 39, Schematic of the hysteresis loop generated
during the slternate tension-compression fatigue testing
of Ti-8Al alloy at 600°C at 2 plastic strain amplitude
of £0.5%.

The low-cycle fatigue behavior of differently heat-treated Ti-8A1-RE and
Ti-10A1-RE alloys is shown in Figures 40-42. When the stress axis is parallel

to the rolling direction (longitudinal orientation), the Ti-8A1-RE and Ti-
10A1-RE alloys have longer fatigue life than the control alloys.

The effects of annealing treatments on the low-cycle fatigue behavior of
Ti-10A1 and Ti-10A1-0.1Y alloys, shown in Figures 43a and 43b, indicate that
the coherent a, precipitates increase saturation and fracture stresses and
produce fatigue softening. The alloys annealed at 980°C do not exhibit
appreciable change in peak stress with increasing number of cycles. The Y
dispersoids increase the fatigue life of Ti-10Al without appreciably changing

the fatigue-saturation stress.

A striking feature of the effects of temperature upon the low-cycle
fatigue behavior of Ti-8A1 and Ti~10Al alloys, shown in Figures 44a and 44b,
is that even at temperatures as high as 600°C, the alloys have fatigue-

saturation stresses in excess of 500 MPa.
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Figure 40. Dependence of peak stress on the number of cycies in the transverse orientation of (n) Ti-8AI-RE alloys deformed

in fatigue at 500°C at a plastic strain amplitude of 0.5% and (b)
strain amplitude of +0.5%.
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Figure 42, Dependumolpeakmumthenumbeto(eyduhmmuleolienudoaoﬂ‘i-wﬂ-k!:nlloysdefauud
in alternate tension-compression fatigue at 500°C at a plastic strain amplitude of £ 0.5%: (a) heat treatment no. 1 and

(b) heat treatment no. 2.
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Figure 43. Effect of heat treatment on the low-cycie fatigue behavior of (s) Ti-10A1 and (b) Ti-10AL-01.Y deformed in
alternate tension-compression fatigue at S00°C at a plastic strain amplitude of £0.5%.
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Figure 44. Low-cycle fatigue behavior as a function of temperature in the longitudinat orientation for (s) Ti-8Al (heat treatment
no. 3) and (b) Ti-10Al (heat treatment no. 2) deformed in alternate tension-compression at a plastic strain of £ 0.5%.
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7.2 Tracture Morphologies and Deformation Substructures

The fracture surfaces of Ti-8Al1 and Ti-8A1-0.1Y specimens failed in
fatigue at 500°C are shown in Figures 45 and 46, respectively. The fatigue
fracture of Ti-8Al is characterized by extensive transgranular cleavage as
indicated by a high density of river patterns, which are characteristic of
this type of fracture. Several secondary cracks are distributed in the
interior of the grains (as at A in Figure 45), and some intergranular fracture
is also indicated. Fatigue striations, which are related to the number of
cycles for fatigue crack propagation, are few in number, indicating that crack
nucleation is the critical event in controlling the fatigue life in these
alloys. The fracture surface of Ti-8A1-0.1Y alloy has a mixed dimple-cleavage
appearance (Figure 46), with each dimple containing a dispersoid. The longer
fatigue lives observed in Y- and Er-containing alloys thus result from crack

propagation by microvoid nucleation and growth.

The deformation substructures in Ti-Al specimens deformed in altermating
tension-compression at 25°C and 500°C are shown in Figures 47-52. Ti-8Al
specimens deformed at 25°C contain planar bands of dislocations of
predominantly a/3 <1120> Burgers vector. MHigh densities of dislocation
dipoles, jogged segments, and primatic loops occur between the bands. In the
Ti-8A1-0.1Y alloy, two distinct types of dislocation distribution are
observed. The regions depleted of rare-earth dispersoids contain planar bands
as shown in Figure 48a, and in regions containing the dispersoids, the

dislocations are distributed more homogeneously (Figure 48b).

In specimens fatigued at 500°C, the planarity of dislocations is
congsiderably reduced because of increased thermally activated cross-slip and
climb. The tendency for planar slip is more pronounced in specimens
containing a, precipitates, and planar slip bands formed by the shearing of
@, precipitates are observed at temperatures as high as 500°C. The shearing
of ay precipitates also results in a continuous dissolution of the

precipitates and consequently a decrease in flow stress with increasing number

of cycles.




GP03.0954-71

{c) Figure 46. Fracture morphology of Ti-8Al-0.1Y (heat
y ; treatment no. 1) fractured in alternate tension-

compression at 500°C at a plastic strain amplitude

of £0.66%.

GP03.0954.70

A

Figure 45. Fracture morphologies of Ti-8Al alloy fractured
in alternate tension-compression fatigue: (a) Ti-8Al (heat
treatment no. 1) fatigued at 500°C at a plastic strain

. amplitude of *0.75%: (b) and (c) Ti-8Al (heat treatment

no. 2) fatigued at 500°C at a plastic strain amplitude

of +0.5%.
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Figure 48. Dislocation substructures in Ti-8AI1-0.1Y (heat
treatment no. 1) deformed in alternate compression at 25°C
at a plastic strain amplitude of + 0.66%.

GP03.0954.72

Figure 47. Dislocation substructures in single-phase Ti-8Al
(heat treatment no. 1) deformed in alternate tension-
compression at 500°C at a plastic strain amplitude of + 0.75%.

42




1 um

(b)

| J
1um

GP03-0954-.73

Figure 50. Deformation substructure in Ti-8Al (heat
treatment no. 2) deformed in alternate tension-compression
at 500°C at a plastic strain amplitude of £0.75%.

1 um
GP03-0954.76

Figure 49. Dislocation substructures in Ti-8 Al (heat
treatment no. 2) deformed in alternate tension-~compression
at S500°C at a plastic strain amplitude of *0.5%.
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Figure 51. Deformation substructures in Ti-8A1-0.2Er
containing fine coherent a j precipitates (heat treayment
no. 2) deformed in alternate tension-compression at
500°C at a plastic strain amplitude of * 0.5%.

1 um
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Figure 52. Transmission of electron micrograph of precipitate/
slip-band interactions in Ti-8Al-0.2Er deformed in altemate
tension-compression fatigue at S00OC at a plastic strain
amplitude of +0.5%.




8. FRACTURE TOUGHNESS OF Ti-8Al1-RE AND Ti~10A1-RE ALLOYS

The plane-strain fracture toughness, KIc’ in the TL orientation was
determined in accordance with ASTM Standard E399-74 for the Ti-8A1-RE alloys
heat trea:ed according to schedules shown in Table 10, and the results are
summarize. (n Table ll. The dimensions of compact-tension specimens used for
the study are shown in Figure 53. The Ti-8A1 alloy aged at 600°C and
containing @, precipitates has significantly lower fracture toughness than the
single-phase allvy. The Y and Er additions result in a significant
improvement in the fracture toughness of a,~precipitation-strengthened Ti-8Al

in the TL orientation.

TABLE 11, PLANE-STRAIN FRACTURE TOUGHNESS (K{.) VALUES OF Ti-SAl-RE ALLOYS.

Plane-strain fracture toughness, ch (MPa ‘/;I)

Heat trestment*

Ti-gAl Ti-8A1-0.065Y Ti-8AI-0.1Y Ti-8AI-0.2E¢
L T L T L T L T
600°C/500 h/AC t0 25°C  26.2 44.3 45.0 48.4 39.3 439 - 420
950°C/30 min/AC to 26°C  45.6 49.9 43.4 50.7 476 49.9 46.8 49.2
+6509C/48 h/AC to 25°C
950°C/30 min/AC to 26°C  41.4 - 66.6 - - - 5.6 -
*AC = afr cooled QPO3-0054-12
/- 6.4 {two holes)
T 12.2 - L - ——
Gf e — =
6.6 ~ -
—-L— 122 —4—-—4~
/ | ]
}-6.4
A 20.3 10.2
' ’ 254 o
Dimensions in mm
QPO3-0854- 79
¢ Figure 53. Compact tension specimen for fracture toughness

determination of Ti-8AI-RE and Ti-10AI-RE alloys.
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9. CONCLUSIONS

Additions of up to 0.1 wt% Y and 0.2 wt% Er to Ti-8Al and Ti~-10Al result
in 50~200 nm diameter incoherent dispersoids. Higher amounts of Y and Er

additions produce coarse 1-5 ym diameter particles.

The rare-earth-modified Ti-8A1 alloys have considerably greater room-
temperature ductility than standard Ti-8Al. The increased ductility arises
from reduced planarity of slip resulting from interstitial-oxygen scavenging

and dispersal of planar slip by the incoherent dispersoids.

Whereas the tensile and fatigue fractures in precipitation-strengthened
Ti-8A1 and Ti-10A1 alloys occur predominantly by cleavage, fracture occurs by

mixed cleavage and microvoid-coalescence in the Er- and Y-containing Ti-8Al1
alloys.

The creep rates at 400-600°C are significantly lower in Ti-8A1 and
Ti-10A1 alloys than in Ti-6A1-4V. The presence of ay reduces the creep rates
in Ti-8Al1 and Ti-10Al alloys, but the Y and Er additions do not alter the
creep rates, stress exponents, and activation energies. The coherent a,
precipitates increase the saturation and fracture stresses, produce fatigue
softening, and reduce the low~cycle fatigue life of Ti-8A1 and Ti-10Al alloys,
but the Er and Y additions increase the low-cycle fatigue life. The Y and Er
additions increase the plane-strain fracture toughness in the TL orientation

of ajy-precipitation-strengthened Ti-8Al.
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